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ABSTRACT 

We propose mathematical models to describe the behaviour of  smart obstacles. In the context of acoustic 
scattering a smart obstacle in an obstacle that when hit b y an incoming acoustic wave reacts circulating 
on its boundary a “pressure current” to pursue a given goal. 

A pressure current is a quantity whose physical dimension is pressure divided by time. The goals 
considered are: 1) to be undetectable, 2) to appear with a shape and an acoustic boundary impedance 
different from its actual ones, 3) to appear in a location in space different from its actual one eventually 
with a shape and an acoustic boundary impedance different from its actual ones. He mathematical models 
proposed for the smart obstacles are optimal control problem for the wave equation. These optimal 
control problems are studied analytically and solved quantitatively using ad hoc numerical methods. 

1. 0 INTRODUCTION 

In this paper a mathematical model for an acoustic time dependent scattering problem involving smart 
obstacles is formulated. Smart obstacles are obstacles that when hit by an incoming acoustic field react in 
order to pursue an assigned goal. The goal pursued by the smart obstacle considered in this paper is: to 
appear in a location in space different from its actual location eventually with a shape and boundary 
impedance different from its actual ones. We call this goal: to appear as a ghost obstacle. The smart 
obstacle pursues its goal circulating a pressure current (i.e. a quantity whose physical dimension is 
pressure divided by time) on its boundary. We show that the pressure current necessary to pursue the goal 
can be determined as the solution of a suitable optimal control problem for the wave equation. 
 
The author and its coworkers have studied similar models for several other classes of smart obstacles in 
acoustic and electromagnetic scattering (see for example (1)-(6) and the website: 
http://www.econ.univpm.it/recchioni). The obstacles considered pursue one of the following goals: 

1. to be undetectable (i.e.: furtivity problem), 
2. to appear with a shape and a boundary impedance different from its actual shape and impedance (i.e.: 

masking problem), 
3. to appear in a location in space different from its actual location eventually with a shape and boundary 

impedance different from its actual ones (i.e.: ghost obstacle problem). 

Zirilli, F. (2006) Mathematical Models of Smart Obstacles. In Battlefield Acoustic Sensing for ISR Applications (pp. 20-1 – 20-8). Meeting 
Proceedings RTO-MP-SET-107, Paper 20. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp. 
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The scattering problems corresponding to 1.-3. have been formulated as optimal control problems for the 
wave equation (acoustic case) or for the Maxwell equations (electromagnetic case) and the first order 
optimality conditions for these control problems have been derived applying the Pontryagin maximum 
principle and solved with appropriate numerical methods on several test problems. The choice of limiting 
the exposition to the ghost obstacle problem is motivated by the following reasons = necessity to choose a 
problem to fix the ideas and brevity and the fact that the ghost obstacle problem is relevant in applications 
and is harder than the furtivity and the masking problems. Several other approaches to study smart 
obstacles have been considered in the literature, see for example (7)-(10). 

2.0  THE GHOST OBSTACLE OPTIMAL CONTROL PROBLEM 

Let 33  , RR ⊂Ω⊂Ω G  be two bounded simply connected open sets with locally Lipschitz boundaries 

GΩ∂Ω∂  ,  and let Ω  and GΩ  be their closures respectively.  Let us denote with 

( ) ( ) ( ) ( )( ) Ω∂∈∈= xxnxnxnxn T ,,, 3
321 R  the outward unit normal vector to Ω∂  in Ω∂∈x . Since Ω has a 

locally Lipschitz boundary, ( ) Ω∂∈xxn  , , exists almost everywhere,  similar statements hold for the 

outward unit normal vector to GΩ∂ . Furthermore let GΩ  be such that ≠ΩG ∅ and =Ω∩Ω G ∅. We 

assume that Ω and GΩ  are characterized by constant acoustic boundary impedances 0≥χ  and ,0≥Gχ  
respectively. The case +∞=χ  and/or +∞=Gχ  (i.e.: the case of acoustically hard obstacles) can be 
treated with simple modifications of the formulae presented here. We refer to ( )χ;Ω   as the obstacle and 
to ( )GG χ;Ω  as the ghost obstacle. We consider an acoustic incident wave ( ) ( ) ,, ,, 3 RR ×∈txtxu i  
propagating in a homogeneous isotropic medium in equilibrium at rest with no source terms present that 
satisfies the wave equation with wave propagation velocity 0>c  in .3 RR ×  
Finally we denote with   ( ) ( ) ( ) RR ×Ω∈ \, ,, 3txtxu s  and with ( ) ( ) ( ) RR ×Ω∈ G

s
G txtxu \, ,, 3 , the 

waves scattered respectively by the obstacle ( )χ;Ω  and by the ghost obstacle ( )GG χ;Ω  when hit by 

( ) ( ) R.R ×∈ 3, ,, txtxu i  

The scattered acoustic field ( ) ( ) ( ) RR ×Ω∈ \, ,, 3txtxu s  is defined as the solution of the following 
exterior problem for the wave equation: 

 ( ) ( ) ( ) ( ) R,R ×Ω∈=
∂

∂
−∆ \,   ,0, 1, 3

2

2

2
txtx

t
u

c
txu

s
s   (1) 

 
with the boundary condition: 

 ( ) ( ) ( ) ( ) ( ) R,×Ω∂∈=
∂
∂

+
∂
∂

− txtxgtx
xn

uctx
t

u ss

,  ,,, , χ   (2) 

 
where ( )txg ,  is given by: 

 ( ) ( ) ( ) ( ) ( ) R,×Ω∂∈
∂
∂

−
∂
∂

= txtx
xn

uctx
t

utxg
ii

,  ,, , , χ   (3) 

 
the boundary condition at infinity: 

 ( ) R,∈+∞→





= tr

r
Otxu s   , ,1,   (4) 
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and the radiation condition: 

 ( ) ( ) R,∈+∞→





=

∂
∂

+
∂
∂ tr

r
otx

t
u

c
tx

r
u ss

 ,  ,1  , 1,   (5) 

 

where ∑= ∂
∂

=∆∈=
3

1 2

2
3 ,  ,

i
ix

Rxxr  is the Laplace operator, 0>c  is the wave propagation velocity and 

( )⋅O  and ( )⋅o  are the Landau symbols. We note that ( ) ( ) R×Ω∂∈txtxg ,  ,,  is defined almost everywhere and 
that the boundary condition (2) can be adapted to deal with the limit case of the acoustically hard 
obstacles, i.e. +∞=χ . The obstacle ( )χ;Ω  that scatters the field su  solution of (1), (2), (3), (4), (5) is 

called passive obstacle. The field ( ) ( ) ( ) RR ×Ω∈ G
s
G txtxu \, ,, 3  scattered by the (passive) ghost obstacle 

is defined as the solution of (1), (2), (3), (4), (5) when in the problem defined above we replace Ω with 
GΩ  and χ  with Gχ . Note that we always consider the ghost obstacle as a passive obstacle. 

We consider the following problem: 
Ghost Obstacle Problem: Given an incoming acoustic field ( ) ( ) R,R ×∈ 3, ,, txtxui  an obstacle ( )χ;Ω , a 
ghost obstacle ( )GG χ;Ω  choose a pressure current circulating on Ω∂  for R∈t  in such a way that the 

wave scattered by ( )χ;Ω  when hit by the incoming acoustic field iu  appears, outside a given set 
containing Ω and GΩ , “as similar as possible” to the wave scattered in the same circumstances by the 
ghost obstacle ( )GG χ;Ω . 
Remember that a pressure current is a quantity whose physical dimension is: pressure divided by time. 
Our goal is to model the ghost obstacle problem as an optimal control problem introducing a control 
variable ( ) ( ) R,×Ω∂∈txtx , ,,ψ  that is a pressure current acting on the boundary of the obstacle. To this 
aim, we replace the boundary condition (2) with the following boundary condition: 
 

 ( ) ( )( ) ( ) ( ) ( ) ( ) R.×Ω∂∈++=
∂
∂

+
∂
∂

− txtxtxgtx
xn

uctx
t

u ss
, ,, 1,, , ψχχ   (6) 

 
Let εΩ  be a bounded simply connected open set containing Ω and GΩ  with Lipschitz boundary εΩ∂  and 
let Ω∂Ω dsds ,

ε
 be the surface measures on εΩ∂  and Ω∂   respectively. 

We choose the following cost functional: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ,,1,,1 2
2

,,






++











 −+= Ω∂

Ω∂Ω∂
Ω∂ ∫∫∫ ∈ dstx   dstxutxu dtF ss

G µςψχλχψ

ε

εµλ
R

  (7) 

 
where 0,0 ≥≥ µλ  are adimensional constants such that ,1=+ µλ  and ς is a nonzero positive 
dimensional constant. We model the ghost obstacle problem via the following optimal control problem: 
 
 ( )ψεµλψ ,,min FC∈ ,  (8) 
 
subject to the constraints (1), (4), (5) and (6).  
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This is a legitimate mathematical model of the ghost obstacle problem. In fact the minimization εµλ ,,F  

makes small s
G

s uu −  for ( ) R×Ω∂∈ εtx, , that is makes small s
G

s uu −  for ( ) ( ) RR 3 ×Ω∈ ε\, tx  and makes 
small the “size” of the pressure current used while the constraints (1), (4), (5), (6) guarantee the 
satisfaction of the dynamic conditions associated to the problem considered. 
 The set C is the space of the admissible controls that we leave undetermined. The obstacle ( )χ;Ω  that 
generates the scattered field su  solution of (8), (1), (4), (5), (6) is called smart or active obstacle. 
Note that in (7) the choice Ω=ΩΩ⊂Ω ε,G  gives the masking problem and that the choice =ΩG φ, 

Ω=Ωε  gives the furtivity problem. 

3.0   THE FIRST ORDER OPTIMALITY CONDITIONS 

Let us make the following assumptions: let ( )φθ ,,r  be the usual spherical coordinate system in R3 with 
pole in the origin, let B be the sphere with center the origin and radius one and let ∂B be its boundary, we 
assume that: 

(a) the boundary of the obstacle Ω is a starlike surface with respect to the origin, that is Ω and ∂B can be 
represented as follows: 

 
 ( ){ }Bxxrxrx ∂∈<≤∈==Ω ˆ,ˆ0ˆ 3 ξR ,  (9) 
 
 ( ){ }Bxxrxrx ∂∈=∈==Ω∂ ˆ,ˆˆ 3 ξR ,  (10) 
 

where ( ) Bxx ∂∈> ˆ,0ˆξ , is a single valued function defined on ∂B that is assumed sufficiently 
regular for the manipulations that follow; 

(b) the sets εΩ  and εΩ∂  can be represented as follows: 
 
 ( )( ){ } 0,ˆ,ˆ0ˆ 3 >∂∈+<≤∈==Ω εεξε Bxxrxrx R ,   (11) 
 
 ( ){ } 0,ˆ,ˆˆ 3 >∂∈+=∈==Ω∂ εεξε Bxxrxrx R .    (12) 
 
for a suitable choice of ε > 0.  
Note that the assumptions (a) and (b) are only one of many other possible choices of assumptions that can 
be made to guarantee the satisfactory solution of the model (8), (1), (4), (5), (6). This choice is made just 
to fix the ideas and to keep the exposition simple. 

Under the assumptions (a) and (b), applying the Pontryagin maximum principle the optimal state 
trajectory su~  and the corresponding adjoint variable trajectory ϕ~  satisfy the necessary first order 
optimality conditions associated to the optimal control problem (8), (1), (4), (5), (6), that is they are the 
solution of the following exterior problem for a system of two coupled wave equations: 

 ( ) ( ) ( ) ( ) RR ×Ω∈=
∂
∂

−∆ \,  ,0,
~1,~ 3
2

2

2 txtx
t
u

c
txu

s
s ,  (13) 

 

 ( ) R∈+∞→





= tr

r
Otxu s   ,   ,1,~ ,  (14) 
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 ( ) ( ) R∈+∞→





=

∂
∂

+
∂
∂ tr

r
otx

t
u

c
tx

r
u ss

  ,  ,1,
~1,

~
,   (15) 

 
 ( ) ( ) ( ) ( )−=

∂
∂

+
∂
∂

− txgtx
xn

uctx
r

u ss

,,
~

,
~

χ  

 ( ) ( ) ( ) R×Ω∂∈
+

− txtx ,,,~
2

1 ϕ
µς
χ ,  (16) 

 

 ( ) ( ) ( ) ( ) R,R ×Ω∈=
∂
∂

−∆ \,  ,0,
~1,~ 3
2

2

2 txtx
tc

tx ϕϕ   (17) 

 

 ( ) R∈+∞→





= tr

r
Otx   ,   ,1,~ϕ ,  (18) 

 
 ( ) ( ) R∈+∞→






=

∂
∂

+
∂
∂ tr

r
otx

tc
tx

r
  ,  ,1,

~1,
~ ϕϕ , (19) 

 
 ( ) ( ) ( ) =

∂
∂

−
∂
∂

− x
xn

ctx
t

ϕχϕ ~
,

~
  ( ) ( ) , ,,,,~12 R×Ω∂∈




















+−










+










+− txt

x
xxut

x
xxu

x
xf s

G
s εεχλ ε

  (20) 

 
 ( ) Ω∈=

−∞→
\,0,~lim 3Rxtxu s

t
,  (21) 

 
 ( ) Ω∈=

+∞→
\,0,~lim 3Rxtx

t
ϕ ,  (22) 

 
where ( ) Ω∂∈xxxf ,/ε  is the function defined by: 
 

 
( )( ) ( )

( )

, 20 ,0

,ˆ,,
,
,

,ˆ

πφπθ

φθυ
φθυ

φθ ε
εε

<≤≤≤

∂∈=Ω∂∈==









B

x
xxxxf

x
xf

  (23) 

  

 

( )

, 20 ,0

 ,sinsin, 22
2

2
2

πφπθ

θξ
φ
ξθ

θ
ξξφθυ

<≤≤≤

+







∂
∂

+






∂
∂

=

  (24) 

 
 ( ) ( ) ( )  ,sinsin, 22

2
2

2

θεξ
φ
ξθ

θ
ξεξφθυε ++








∂
∂

+






∂
∂

+=  

 πφπθ 20,0 <≤≤≤ .  (25) 
 
The relation between ϕ~  and the optimal control ψ~  solution of problem (8), (1), (4), (5), (6) is the 
following one: 
 

 ( ) ( ) ( ) R×Ω∂∈−= txtxtx ,,,~
2

1,~ ϕ
µς

ψ .  (26) 
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Let us point out that we have: 

 ( ) πφπθφθφθυ 20,0,, <≤≤≤=Ω∂ ddds ,   (27) 
 
and 
 ( ) πφπθφθφθυεε 20,0,, <≤≤≤=Ω∂ ddds ,  (28) 
 

4.0  NUMERICAL SOLUTION OF THE EXTERIOR PROBLEM (13) – (22) 

Numerical methods to solve the exterior problem (13)-(22) have been developed in [5], [6]. These 
methods belong to the class of the operator expansion methods and are highly parallelizable. Some 
numerical experiments proving the validity of the control problem proposed as mathematical model of  the 
ghost obstacle problem are shown in the website http://www.econ.univpm.it/recchioni/w11.  

5.0  EXTENSION AND CONCLUSIONS 

The work presented can be extended to a new class of smart obstacles that pursue the following goal: 

4. one of the goals specified in the Introduction restricted to a definite band in the frequency space. 

For reasons of brevity we restrict our attention to the definite band ghost obstacle problem in the acoustic 
case. This problem is formulated as an optimal control problem for the wave equation. The acoustic 
definite band masking problem and furtivity problem can be treated similarly. We consider the study of 
these problems as preliminary to the study of the corresponding problems in the electromagnetic case 
where the wave equation must be replaced with the Maxwell equations. 

We note that restricting the goal pursued to a definite band in the frequency space modifies substantially 
the mathematical formulation of the problems under scrutiny. In fact the optimal control problems used to 
model problems 1), 2), 3) in particular the cost functionals that must be minimized in order to model 
appropriately the problem formulated only on the desired band in the frequency space are “nonlocal”. That 
is the presence of the definite band makes necessary the use of suitable convolutions involving the anti 
Fourier transform of the characteristic function of the definite frequency band in the definition of the cost 
functional. Consequently the first order optimality conditions of these new optimal control problems 
change substantially and cannot be deduced from those derived in [2], [3], [5] and here for the optimal 
control problems 1), 2), 3). That is the first order optimally conditions are not expressed by two wave 
equations coupled by local boundary conditions as in [2], [3], [5] and here but the coupling between the 
two wave equations is given by nonlocal (in time) boundary conditions. As a consequence the way of 
solving the first order optimality conditions must be changed. 

We can conclude that the idea of modelling the smart obstacles using optimal control problems is an 
interesting idea. Moreover the work developed until now with the model proposed can be profitably 
extended in several directions such as the study of closed loop controls, finite horizon controls, or the 
study of inverse problems involving smart obstacles. These are challenging mathematical questions whose 
solution can be very valuable in practical applications. 
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2

Smart (or active) obstacles are obstacles that when 
illuminated by an incoming field react actuating a policy 
in order to pursue an assigned goal. The design of smart 
obstacles can be improved by the availability of 
satisfactory mathematical models of them. We propose 
the use of models based on optimal control problems to 
describe the behaviour of smart obstacles.

Let us restrict our attention to the context of time 
dependent and time harmonic acoustic or 
electromagnetic scattering. In this context the smart 
obstacle in order to pursue its goal circulates on its

 

 
boundary a pressure current (acoustic case) or a surface 
electric current density (electromagnetic case).
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The goal pursued by the smart obstacle 
considered in our work is one of the following:

to be undetectable (furtivity

 

problem),
to appear with a shape and boundary impedance 
different from its actual ones (masking problem),
to appear in a location in space different from its 
actual one eventually with a shape and boundary 
impedance different from its actual ones (ghost 
obstacle problem),
one of the previous goals restricted to a given band in 
the frequency space (definite band problems).

These problems are translated in optimal control 
problems for the wave equation (acoustic case) or for 
the Maxwell equations (electromagnetic case).
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We consider:

1)Direct scattering problems

In this case the optimal control problems associated to the 
smart obstacles give a way of characterizing and 
computing the currents needed to pursue the assigned goal 
as optimal solutions of the mathematical problems 
considered,

2) Inverse scattering problems

That is starting from some knowledge of "far field data" 
generated by the smart obstacle in correspondence of 
several known incoming fields and the knowledge of the 
"nature" (furtive, masked ghost) of the smart obstacle we 
want to reconstruct the shape of the obstacle. In this case 
the optimal control model gives the mathematical 
framework where to formulate the inverse problem.

The work presented is joint work with: 
L.

 

Fatone, F.

 

Mariani, G.

 

Pacelli, M.C. Recchioni.
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Direct Scattering Problems

See the papers:

F. Mariani, M.C. Recchioni, F. Zirilli: "The use of the Pontryagin

 

maximum principle in a furtivity

 

problem in time dependent 
acoustic obstacle scattering", Waves in Random Media 11, (2001), 
549-575.
L. Fatone, M.C. Recchioni, F. Zirilli: "A masking problem in time 
dependent acoustic obstacle scattering", ARLO-Acoustic Research 
Letters Online 5, Issue 2, (2004), 25-30.
L. Fatone, M.C. Recchioni, F. Zirilli: "Furtivity

 

and masking 
problems in time dependent electromagnetic obstacle scattering",

 

Journal of Optimization Theory and Applications, 121, (2004), 223-

 

257.
L. Fatone, G. Pacelli, M.C. Recchioni, F. Zirilli: "The use of 
optimal control methods to study two classes of smart obstacles in 
time dependent acoustic scattering", to appear in Journal of
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We treat furtivity, masking, ghost obstacle and 
definite band problems in acoustic and 
electromagnetic obstacle scattering in a similar way.

For simplicity in this talk we begin concentrating on 
the direct problem in the simplest case: furtivity

 

problems in acoustics.

We consider a furtivity

 

problem in the context of time 
dependent three dimensional acoustic obstacl

 

e 
scattering.
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Let 3R⊂Ω  be a bounded simply connected open
set with locally Lipschitz boundary Ω∂  and let Ω
be its closure. Let ( )xn be the outward unit normal 
vector to ∂ Ω  in Ω∈  ∂x . 
We assume that there exists a > 0 such that: 
 

{ } Ω⊂≤∈= axxBa   3R . 
 
We consider acoustic waves propagating in a
homogeneous, isotropic medium in equilibrium at
rest filling Ω\3R  with no source terms present. 
 
The obstacle Ω is the scatterer that we assume to be
characterized by a constant boundary acoustic 
impedance 0>χ . 
The limit cases of acoustically soft obstacles ( )0=χ
and acoustically hard obstacles ( )+∞=χ  can be 
considered. 
 
Let ( ) ( ) RR,, ×∈ 3, txtxui be the incoming acoustic 
wave, we assume that ( )txui ,  satisfies: 
 

( ) ( ) ( ) RR=- ×∈Δ 3
2

2

2 ,  ,0,
 

1, txtx
t
u

c
txu

i
i

∂
∂

, 
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where   
 

 
3

1
2

2

∑
=

=Δ
i ix∂

∂
and 0 >c  is the wave 

propagation velocity. 
 
When the incoming wave hits the obstacle Ω a 
scattered wave ( ) ( ) ( ) RR, ×Ω∈ \,, 3s txtxu  is generated.
 
For "passive" obstacles ( )txu s , is defined as the 
solution of the following problem: 
 
 

(1) ( ) ( ) RR ×Ω∈=−Δ \,    ,0
 

1
2

2

2
3

s
s tx

t

u

c
u

∂

∂ , 

 

(2) ( ) ( ) R×Ω∈+−  ,,,=  c
 

 ∂
∂
∂χ

∂
∂ txtxg

n
u

t
u ss

, 

 

(3) ( ) R∈∞→=⎟
⎠
⎞

⎜
⎝
⎛= txr

r
Otxus ,   , 1, , 

 

(4) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛+ tr

r
o

t
u

cr
u ss

  , ,1=
 

 1
 

 
∂
∂

∂
∂ , 

 
 
where   
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( ) ( ) R×Ω∈−=  ,,
 
 

 
 , ∂

∂
∂χ

∂
∂ tx

n
uc

t
utxg

ii
. 

 
The (direct) furtivity problem studied here can be
stated as follows: given the incoming wave packet

iu , the obstacle Ω and its acoustic boundary
impedance χ choose a control function, in a suitable 
class of admissible controls, in order to minimize a
cost functional that roughly speaking measures the
"magnitude" of the scattered wave. 
The control function is defined on the boundary of
the obstacle Ω ∂  for R∈t . 
 
The presence of this control function changes the
nature of the obstacle from being a "passive"
obstacle in being an "active" obstacle, that is a
"smart" obstacle. 
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Let C be the space of the admissible controls, we
want to solve the following optimal control problem:
 
(5) ( )ψμλ

ψ
,Fmin

C∈ , 

 
subject to: 

(6) ( ) ( ) RR ×Ω∈=−Δ \,    ,0
 

1
2

2

2
3

s
s tx

t

u

c
u

∂

∂ , 

 
(7) ( ) ( ) ( ) ( ) R×Ω∈+++−  ,,,  1,=  c

 
 ∂ψχ

∂
∂χ

∂
∂ txtxtxg

n
u

t
u ss

, 

 

(8) ( ) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛= tr

r
Otxus ,  , 1, , 

 

(9) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛+ tr

r
o

t
u

cr
u ss

 , ,1=
 

 1
 ∂

∂
∂
∂

, 

 
where: 

(10) ( ) ( ) ( ) ,  1  
22

 
, Ω

Ω
⎟
⎠

⎞
⎜
⎝

⎛ ++= ∫∫ ∂
∂

μλ μξψλχψ dsudtF s

R
 

 
0 and ,1 ,0 ,0 >=+≥≥ ξμλμλ is a dimensional 

constant. 
Note that μλ,  are adimensional. 
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Remind that: 
 

 ( ) ( ) ( ) Ω
Ω

⎟
⎠

⎞
⎜
⎝

⎛ ++= ∫∫  
22

 
,   1 ∂

∂
μλ μξψλχψ dsudtF s

R
. 

 
 
Remarks: 
 

1. su  depends on ψ via the boundary condition (7),
 
2. 1  ,0 == μλ  corresponds to the "passive"

obstacle, in fact in this case 0ˆ ≡ψ minimizes 
( )ψμλ,F , 

 
3. 0  ,1 == μλ  corresponds to the "undetectable"

obstacle, in fact in this case g
χ

ψ
+

−=
1

1ˆ  gives 

0=su  and ( ) 0ˆ, =ψμλF . That is the proposed 

choice of ψ̂  minimizes ( )ψμλ,F and makes the 

obstacle undetectable (i.e. 0=su ). 
 
The  functional ( )ψμλ,F generates interesting 
problems when 1,0 ,0 =+>> μλμλ . 
In this case minimizing (10) we make su  "small" in 
( ) RR ×Ω\3  (we make the obstacle furtive). The  
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explicit presence of ψ in (10) (i.e. 0>μ ), implies 
that a cost must be paid to achieve furtivity. 
 
The assumption that the control function ψ  is 
defined on R×Ω ∂ is a natural assumption in many
applications. 
 
Dimensionally ψ is pressure divided by time so that 
we call ψ "pressure current". 
 
Let us apply the Pontryagin maximum principle to 
the previous optimal control problem. 
Note that ( ) ( ) ( ) RR, ×Ω∈ \,, 3s txtxu is the "state trajectory" 
and ( ) ( ) R, ×Ω∈  ,, ∂ψ txtx  is the "control function". 
We begin choosing C the set of the admissible
controls and the space U that is supposed to contain 

Ω |∂
su . 

 
 
We define: 
 

{ ( ) RRR →×Ω= \: 3FDm  such that R×Ω ∂F , 
 

( ), L
 
 , 2

  RRR ×Ω∈×Ω×Ω ∂
∂
∂

∂
∂

∂∂ t
F

n
F
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F satisfies the wave equation (1), the boundary
condition at infinity (3) and 
 

⎭
⎬
⎫

∈∞→⎟
⎠
⎞

⎜
⎝
⎛+ Rtr

r
o

t
F

cr
F   ,,1=

 
 1

 
 

∂
∂

∂
∂

, 

 
{ ( ) ( ) ( ) RR ∈Ω∈×Ω∈= ∞ ttxffC , L,, L2 ∂∂  

 
such that −∈∃ DF  such that  

( )
⎭
⎬
⎫Ω∈==

−∞→
×Ω \,0,  , 

3
t

xtxFlimfF RR∂ , 

 
{ ( ) ( ) ( ) RR ∈Ω∈×Ω∈= ∞ ttxffU , L,, L2 ∂∂  

 
such that +∈∃ DF  such that  

( )
⎭
⎬
⎫Ω∈==

−∞→
×Ω \,0,  , 

3
t

xtxFlimfF RR∂ . 

 
Note that C and U are vector spaces. 
 
The Hamiltonian associated to the optimal control
problem considered previously is given by: 
 

( ) ( ) ( ) ( )χϕϕϕψ
∂

∂ +
⎩
⎨
⎧

= ∫
Ω

Ω 1  ,   ,,,,
 

 txxdstuH oo
s  

 
( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) . ,, 1,

 
    ,,, 22

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−+⎥⎦

⎤
⎢⎣
⎡ + txgtxtx

n
uctxtxtxu

s
s ψχ

∂
∂χϕψμξλ  
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The functions ( ) ( )txtx o ,,, ϕϕ are called "adjoint 
variables".  
Note that we can choose 1−≡oϕ . 
Let ( ) ( ) RR, ×∈ 3i txtxu ,, be an incident wave such 
that C∈∀ψ  the corresponding su solution of (6), 
(7), (8), (9), satisfies the condition: 
 

( ) Ω∈=
−∞→

\ ,0, 3s
t

xtxulim R , 

 

and  ( )RRRR ×Ω∈×Ω×Ω×Ω  , ,
 

 , 2
   ∂

∂
∂

∂
∂

∂∂∂ L
n
u

t
uu

ss
s . 

 
Using the Pontryagin maximum principle it can be
shown that the optimal solution of the optimal 
control problem (5), (6), (7), (8), (9) satisfies the
following set of equations: 
 

(11) ( ) ( ) RR ×Ω∈=−Δ \,    ,0
 

1
2

2

2
3

s
s tx

t

u

c
u

∂

∂
, 

(12) ( ) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛= tr

r
Otxus ,  ,1, , 

(13) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛+ tr

r
o

t
u

cr
u ss

, ,1=
 

 1
 

 
∂
∂

∂
∂

, 

(14) ( ) ( ) R×Ω∈
+

−+−  , ,
2
1=

 
  c

 
 ∂ϕ

μξ
χ

∂
∂χ

∂
∂ txg

n
u

t
u ss

, 
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(15) ( ) ( ) RR ×Ω∈=−Δ \,    ,0
 

1
2

2

2
3tx

tc ∂
ϕ∂ϕ , 

(16) ( ) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛= tr

r
Otx ,  , 1,ϕ , 

(17) R∈∞→⎟
⎠
⎞

⎜
⎝
⎛−− tr

r
o

tcr
, ,1=

 
  1

 
 

∂
ϕ∂

∂
ϕ∂

, 

(18) ( ) ( ) ,txu
nt

s R×Ω∈+−−−  , ,  1  2=  c
 
 ∂χλ

∂
ϕ∂χ

∂
ϕ∂

 

(19) Ω∈==
+∞→−∞→

\  ,0 3
t

s
t

xlimulim Rϕ . 

 
The relation between ϕ and the optimal control ψ̂ of 
problem (5), (6), (7), (8), (9) is the following one: 
 
(20) ( ) ( ) ( ) R×Ω∈−=  ,,,

2
1,ˆ ∂ϕ
μξ

ψ txtxtx ,  10 << μ . 

 
That is the solution of the optimal control problem
(5), (6), (7), (8), (9) can be characterized through
(20) via the solution of an exterior problem for two
coupled wave equations, that is problem (11), (12),
(13), (14), (15), (16), (17), (18), (19). 
 
This fact makes possible to solve the control
problem for the smart obstacle approximately at the
same computational cost than the cost necessary to
solve the scattering problem for the passive obstacle.



18

Let us consider now masking problems. 
 
 
Acoustic Masking Problem 
 
Given the incoming acoustic wave packet iu , the 
obstacle Ω  and its boundary impedance χ , and 
given an obstacle D such that Ω⊂D , with 
boundary impendance '

aχ , choose a pressure current 
(i.e. a control function) defined on the boundary of
the obstacle ΩΩ   ,∂ , for R∈t in order to minimize a 
cost functional that measures the "difference"
between the wave scattered by Ω and the wave 
scattered by D when hit by iu . 
 

Note that the couple ' , aD χ  is called "the mask". 
 

Let s
Du  be the scattered field generated by 

' , aD χ
when hit by iu  ( Ω⊂D ). 
 
The masking problem considered can be treated as a
furtivity problem with the cost functional given by: 
 

(21) ( ) ( ) ( )[ ] Ω 
22s

D
s

 Ω  μλ,2, ds  ξμ  uu λ χ1dtψF ∂∂
ψ+−+=∫ ∫R  . 
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Inverse Scattering Problems 
 
We limit our attention to time harmonic inverse 
scattering problems. 

Let c
k ω
= and 

s
ku α, be the time harmonic field

( ) ( ) ( ) RR ×Ω∈ \,,, 3txtxu s  scattered by the smart 
obstacle when hit by the time armonic plane wave

( )α
α

,
,

xiki
k eu =  similarly let αϕ ,k be the corresponding 

time harmonic component of the adjoint variable

( ) ( ) ( ) RR ×Ω∈ \,,, 3txtxϕ  and 
s

kDu α,,  be the 
corresponding time harmonic component of the field
scattered by the mask ( ) ( ) ( ) RR ×Ω∈ \,,, 3txtxu s

D . 
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Arguing as before it can be seen that for 

Bk  ∂∈∈ αR,  the functions αα ϕ ,, , k
s
ku satisfy the 

following exterior boundary value problem: 
 
( )( ) ,\  ,0 3

,
2

, Ω∈=+Δ Rxxuku s
k

s
k αα    (22)

 
( )( ) ,\  ,0 3

,
2

, Ω∈=+Δ Rxxk kk αα ϕϕ    (23)
 

( ) ( ) ( ) ( ) ( )

( ) ,  ,

11

,

,
,

,

Ω∂∈=

=++
∂

∂
+

xxb

xx
xn

u
xiku

k

k

s
ks

k

α

α
α

α ϕχ
ξ

χ
  (24)

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ,  ,01

1 1

,,,

,
,

Ω∂∈=−++

+
∂

∂
−−−

xxuxu

x
xn

xik

s
kD

s
k

k
k

αα

α
α

χλ

ϕ
χλϕλ

  (25)

 
with the following conditions at infinity: 
 

( ) ( ) ,  ,1
,

, +∞→⎟
⎠
⎞

⎜
⎝
⎛=−

∂

∂
r

r
oxiku

r
xu s

k

s
k

α
α

   (26)
 

( ) ( ) +∞→⎟
⎠
⎞

⎜
⎝
⎛=+

∂

∂
r

r
oxik

r
x

k
k   ,1

,
,

α
α ϕ

ϕ
   (27)
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where 
( ) ( ) ( )( )( ) Ω∂∈+= xxn-ikexb xik

k ,,1,
, αχα
α  

Let ( ) ( ) Ω∈ \ ,   , 3
,, Rxxxu k

s
k αα ϕ be the solution of 

(22)-(27). The function ( ) Ω∈ \  ,  3
, Rxxk αϕ , 

solution of (22)-(27) is an auxiliary unknown related 
to the optimal control ( ) ( ) Ω∂∈= xxx   ,ψ̂ψ , by the 
following relation: 
 

( ) ( ) Ω∂∈−= xxx k   ,1ˆ ,αϕ
ξ

ψ      (28)
 
Due to the first order optimality condition (22)-(27) 
the solution of the acoustic time harmonic direct
masking problem consists in finding the scattered

acoustic field s
ku α,  and the auxiliary function αϕ ,  k

solutions of (22)-(27) and in determining the optimal 
control function via equation (28). 
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In particular s
ku α, is solution of the Helmholtz

equation (22) in Ω\3R and satisfies the 
Sommerfeld radiation condition (26) at infinity, this 
implies that: 
 
 

 ( ) ∞→⎟
⎠

⎞
⎜
⎝

⎛+= r
r

OkxF
r

eu u

ikr
s
k   , 1,,ˆ 2, αα .  (29)

 

The term ( )α,,ˆ kxFu  is called "far field" of 
s
ku α, . 

Similarly αϕ , k  (    ⋅ = complex conjugate) is solution
of the Helmholtz equation (23) in Ω\3R  and 
satisfies the Sommerfeld radiation condition ( 26 )
((26) complex conjugate), this implies that: 
 

( ) ∞→⎟
⎠
⎞

⎜
⎝
⎛+= r

r
OkxF

r
eikr

k  ,1,,ˆ 2, αϕ ϕα    (30)
 

The term ( )αϕ ,,ˆ kxF  is called "far field" of αϕ ,k . 
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Acoustic Time Harmonic Masking Inverse
Scattering Problem 
 
From the knowledge of several far fields generated 
by the masked obstacle when hit by known incident
acoustic waves when the optimal pressure current is
active and of the acoustic boundary impedances of
the obstacle and of the mask find the shape of the
obstacle. 
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We generalize to the case of smart (masked) 
obstacles the Herglotz function method used to
reconstruct the shape of an obstacle from far field
data in the case of passive obstacles. 
This method has been introduced in:  
 
D. Colton and P. Monk, “The numerical solution of
the three dimensional inverse scattering problem for
time harmonic acoustic waves”, SIAM Journal on 
Scientific and Statistical Computing, 8, (1987), 193-
200, and developed by several authors including: 
 
L. Misici, F. Zirilli, “Three-dimensional inverse 
obstacle scattering for time harmonic waves: a 
numerical metnod”, SIAM Journal on Scientific 
Computing, 15, (1994), 1174-1189.  
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Let E   be the set of the eigenvalues of the matrix

Laplace operator ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ
=

  0
0  

Δ acting on two dimensional 

vector functions defined in the domain Ω with the
homogeneous boundary condition corresponding the
to boundary condition (32) on Ω∂ . 
 

Definition 1 Given - E∉2k  let kW be the unique 
solution of the equation: 
 
( )( ) ( ) Ω∈=+ yyWkyW kk   ,0 2Δ     (31)
 
with the boundary condition: 
 

( ) ( )( ) ( )
( )

( )
( )

,  ,

0

4

,0

,04
0  0
0   1

2 Ω∂∈
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
Φ∂

+

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Φ

Φ
=

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

y
y

n
y

ik

y

y

k
y

yn
W

ik
yW

k

k

kk
k

πχ

πχ

(32)

 

where  
( )

yx
eyx

yxik

k −
=Φ

−

π4
,

. 
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We say that Ω is a smart Herglotz domain at wave
number k with respect to the boundary condition 
(32) if there exists ( ) ( ) Bxxgxg

kk
∂∈= ˆ,ˆˆ~  such that: 

 

( )
( )
( ) ,ˆ  ,
ˆ

ˆ
ˆ

,

, Bx
xg

xg
xg

k

uk
k ∂∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ϕ                 (33)

 
and 
 

( ) ( ) ( ) ( ) .  ,ˆˆ ,ˆ
 

Ω∈= ∫∂ ∂ yxgexdsyW k
yxik

B Bk  
 
It is easy to see that the class of the smart Herglotz 
domains at wave number k is not empty in fact for 
example, when  E∉− 2k  the passive sphere is a 
smart Herglotz domain. 



27

Let us define:  
 
 

( )
( )
( )

,  ,ˆ  ,
,,ˆ

,,ˆ
,,ˆ

,0

,0 BBx
kxF

kxF
kxF

su ∂∈∂∈⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= α

α

α
α

ϕ
  (35)

 
and for R∈ba,  let  
 
 

( )
( )
( )   ,ˆ  ,
ˆ

ˆ
ˆ

,

,
,, Bx

xbg

xag
xr

k

uk
bak ∂∈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ϕ     (36)
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Now we can describe the numerical method that we

propose to solve the inverse scattering problem

involving smart obstacles considered here. 

Let ,,,, 4321 NNNN be four positive integers, let

{ }∑ =∉−>=1 1
2 ,...,2,1,|0 Nikk ii E be the set of the 

wave numbers considered, { }∑ =∂∈=2 2,...,2,1  , NiBiα

be the set of propagation directions of the incoming

waves considered, { }∑ =∂∈=3 3,...,2,1  ,ˆ NiBxi  be the 

set of directions where the far fields generated by the

incoming waves are measured and

{ }∑ =∂∈=4 4,...,2,1  ,ˆ NiBxi be a second set of 

directions where the far fields generated by the

incoming waves are measured. Moreover let

∑3 and ∑4 be such that ∑∑ =∩ 43 ∅. 



29

Let λN  be a positive integer and let us choose
( ) λλ Nii ...,2,1  ,1,0 =∈  such that 1,...,2,1  ,1 −=< + λλλ Niii , 

the numerical algorithm that we propose to
reconstruct Ω∂  is based on the following iterative
procedure: let 1=i  
 
0i ) set iλλ = ; 
1i ) choose an initial approximation * Ω∂  of the 

boundary Ω∂ ; 
2i ) using the current approximation * Ω∂  of  Ω∂ 

from the knowledge of the value given to the
parameter λ appearing in the first order
optimally conditions (22)-(27) and the 
knowledge  of  the  measures  of   the   far 
fields ( ) 4321,0 ˆ,,,,,ˆ Σ∪Σ∈Σ∈Σ∈ xkkxF su αα

approximate the far field
( ) ( ) BxkkxFkxF su ∂∈Σ∈Σ∈ ˆ,,,,,ˆ, ,,ˆ 21,0,0 ααα ϕ ; 

3i )  from the relation: 

 
( ) ( ) ( )( )

R,∈=

== ∫
∂

∂

baNj

NixrkxFxds
k

a bakji
B

B
i

i

,,,...,2,1

   ,,...,2,1  , ˆ, ,,ˆ ˆ1

2

1,,α
(36)

 and from the knowledge of the far fields
associated to s

ku α,  and αϕ ,k reconstruct an 
approximation of the vector Herglotz kernels

1,...,2,1  , Nig
ik =  associated to the smart Herglotz 

domain Ω; 
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4i ) from equation (34) and the knowledge of the 
approximate Herglotz kernels reconstruct the 
associated vector Herglotz wave functions

;,...,2,1  , 1NiW
ik =  

5i ) from equation (32) and from the knowledge of 
the vector Herglotz wave functions 

1,...,2,1  , NiW
ik = reconstruct a new

approximation Ω∂ ~  of the boundary Ω∂  of the 
smart obstacle; 

6i ) if the “distance” between the old and the new 
approximation of Ω∂ , that is the “distance” 
between * Ω∂  and  Ω∂ ~ is “small” set 

Ω∂=Ω∂ ~ i  and go to Step 7i ) otherwise set 
Ω∂=Ω∂ ~ *  and go to Step 2i ); 

7i )   if  λNi =  stop otherwise set 1+= ii  and go to 
Step 0i ). 

 
The reconstruction of the couple ( )Ω,λ  chosen 
among the solutions ( ) λλ Niii ,...,2,1   ,, =Ω  obtained 
with the previous procedure is the one where the
boundary condition (32) is satisfied more accurately. 
That is if the boundary condition (32) is imposed in 
the least squares sense the one that minimizes the 
remainder at the end of the least squares procedure. 
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The first experiment shown, involves a furtive 
acoustically soft (i.e. 0=χ ) double cone (see Fig. 1). 
The double cone is obtained placing two cones of
the same height and base one upon the other with 
their bases in common and its boundary is defined 
by: 
 

( ) ( ) ( )
( ) ( )⎩

⎨
⎧

<≤≤≤−
<≤≤≤−

==
,20,2/   ,4/5sin/4/sin
,20,2/0   ,4/3sin/4/sin

1 πφπθπθππ
πφπθθππ

θfr  (37)

 
It is easy to see that ( )θ1f is the sum of an infinite 
Fourier series. Figure 1 shows the reconstructions
obtained applying the procedure described in Step 

0i )- 7i ) when we choose 1.0  ,1  ,* ===Ω λcB or 
,105  ,8  ,1  ,1  ,9.0 -3

max ⋅∈===−== Lξλμλ  8 =sL or , 20 =sL

{ } ( ) ( )( ){ }  ,10,...,2,1  ,10/cos,0,10/sin,4 21 =∂∈==Σ=Σ iBii T
i ππα

( ) ( ) ( ) ( ) ( )( ){ 10/cos,5/sin10/sin ,5/cos10/sinˆ3
Tijijix πππππ==Σ

and  } ( ) ( ){ }  .1,0,0,1,0,010,...,2,1  ,9,...,2,1  TTji −∪==  
( )( ) ( )( ) ( )( )({   20/12sin ,10/12cos20/12sinˆ4 πππ −−−==Σ ijix

( )( ) ( )( ) }  10,...,2,1  ,10,...,2,1  ,20/12cos,10/12sin ==−− jiij Tππ . 
We note that the reconstructions shown in Figure 1
are very similar and they depend essentially only on
the value of sL  used as shown by the reconstructions
obtained when 9.0=λ and 8=sL  or 20=sL . 
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The second experiment involves a smart acoustically 
soft (i.e. 0=χ ) corrugated sphere whose boundary
is given by πφπθθθ 20,0),4(sin15.01)( 2 <≤≤≤−== fr
(see Fig. 2)) that pursues the goal of appearing as an 
acoustically soft (i.e 0' =aχ ) double cone (see Fig. 1 
up left corner)). In this experiment the far field data
used for the reconstruction are synthetic data
obtained solving numerically the corresponding
direct scattering problems and have 3-4 significant 
digits exact. We have chosen the initial guess of 

*Ω∂  assigned in Step i1) to be the surface of the 
sphere with center the origin and radius 1.2,
moreover we have chosen 1.0,1 == λc (Figure 2), 

9.0=λ  (Figure 3), ,105,8,1,1 3
max

−⋅∈====−= gLLξλμ

,8=sL { } ( ) ( )( ){ },10,...,2,1  ,10/cos,0,10/sin  ,3 21 =∂∈==Σ=Σ iBii T
i ππα

( ) ( ) ( ) ( ) ( )( ){ 10/cos,5/sin10/sin ,5/cos10/sinˆ3
Tijijix πππππ==Σ

and  } ( ) ( ){ }  .1,0,0,1,0,0 10,...,2,1  ,9,...,2,1  TTji −∪== and 
( )( ) ( )( ) ( )( )({   20/12sin ,10/12cos20/12sinˆ4 πππ −−−==Σ ijix . 

( )( ) ( )( ) }  10,...,2,1  ,10,...,,2,1  ,20/12cos,10/12sin ==−− jiij Tππ .
Figures 2 and 3 show the results obtained applying
the procedure to solve the inverse problem i0)-i7) 
when 1.0=λ  (Figure 2) and 9.0=λ (Figure 3). As 
shown in the figures we choose different values of
the parameters a and b of the initial guess *Ω∂ . 



34


	MP-SET-107-20
	MP-SET-107-20
	MATHEMATICAL MODELS OF SMART OBSTACLES��
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34


	Link to presentation: 


